18 research outputs found

    Audio-Visual Speech Enhancement Based on Deep Learning

    Get PDF

    Effects of Lombard Reflex on the Performance of Deep-Learning-Based Audio-Visual Speech Enhancement Systems

    Full text link
    Humans tend to change their way of speaking when they are immersed in a noisy environment, a reflex known as Lombard effect. Current speech enhancement systems based on deep learning do not usually take into account this change in the speaking style, because they are trained with neutral (non-Lombard) speech utterances recorded under quiet conditions to which noise is artificially added. In this paper, we investigate the effects that the Lombard reflex has on the performance of audio-visual speech enhancement systems based on deep learning. The results show that a gap in the performance of as much as approximately 5 dB between the systems trained on neutral speech and the ones trained on Lombard speech exists. This indicates the benefit of taking into account the mismatch between neutral and Lombard speech in the design of audio-visual speech enhancement systems

    On Training Targets and Objective Functions for Deep-Learning-Based Audio-Visual Speech Enhancement

    Full text link
    Audio-visual speech enhancement (AV-SE) is the task of improving speech quality and intelligibility in a noisy environment using audio and visual information from a talker. Recently, deep learning techniques have been adopted to solve the AV-SE task in a supervised manner. In this context, the choice of the target, i.e. the quantity to be estimated, and the objective function, which quantifies the quality of this estimate, to be used for training is critical for the performance. This work is the first that presents an experimental study of a range of different targets and objective functions used to train a deep-learning-based AV-SE system. The results show that the approaches that directly estimate a mask perform the best overall in terms of estimated speech quality and intelligibility, although the model that directly estimates the log magnitude spectrum performs as good in terms of estimated speech quality

    Audio-Visual Speech Inpainting with Deep Learning

    Get PDF
    In this paper, we present a deep-learning-based framework for audio-visual speech inpainting, i.e., the task of restoring the missing parts of an acoustic speech signal from reliable audio context and uncorrupted visual information. Recent work focuses solely on audio-only methods and generally aims at inpainting music signals, which show highly different structure than speech. Instead, we inpaint speech signals with gaps ranging from 100 ms to 1600 ms to investigate the contribution that vision can provide for gaps of different duration. We also experiment with a multi-task learning approach where a phone recognition task is learned together with speech inpainting. Results show that the performance of audio-only speech inpainting approaches degrades rapidly when gaps get large, while the proposed audio-visual approach is able to plausibly restore missing information. In addition, we show that multi-task learning is effective, although the largest contribution to performance comes from vision

    Vocoder-Based Speech Synthesis from Silent Videos

    Get PDF

    Speech inpainting: Context-based speech synthesis guided by video

    Full text link
    Audio and visual modalities are inherently connected in speech signals: lip movements and facial expressions are correlated with speech sounds. This motivates studies that incorporate the visual modality to enhance an acoustic speech signal or even restore missing audio information. Specifically, this paper focuses on the problem of audio-visual speech inpainting, which is the task of synthesizing the speech in a corrupted audio segment in a way that it is consistent with the corresponding visual content and the uncorrupted audio context. We present an audio-visual transformer-based deep learning model that leverages visual cues that provide information about the content of the corrupted audio. It outperforms the previous state-of-the-art audio-visual model and audio-only baselines. We also show how visual features extracted with AV-HuBERT, a large audio-visual transformer for speech recognition, are suitable for synthesizing speech.Comment: Accepted in Interspeech2

    Vocoder-Based Speech Synthesis from Silent Videos

    Get PDF
    Both acoustic and visual information influence human perception of speech. For this reason, the lack of audio in a video sequence determines an extremely low speech intelligibility for untrained lip readers. In this paper, we present a way to synthesise speech from the silent video of a talker using deep learning. The system learns a mapping function from raw video frames to acoustic features and reconstructs the speech with a vocoder synthesis algorithm. To improve speech reconstruction performance, our model is also trained to predict text information in a multi-task learning fashion and it is able to simultaneously reconstruct and recognise speech in real time. The results in terms of estimated speech quality and intelligibility show the effectiveness of our method, which exhibits an improvement over existing video-to-speech approaches.Comment: Accepted to Interspeech 202

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    Generative Adversarial Networks for Speech Processing

    No full text
    corecore